3.6.78 \(\int (a+b x^n+c x^{2 n})^{3/2} \, dx\) [578]

Optimal. Leaf size=140 \[ \frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \]

[Out]

a*x*AppellF1(1/n,-3/2,-3/2,1+1/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b*x^n+c*x
^(2*n))^(1/2)/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1362, 440} \begin {gather*} \frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(a*x*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[n^(-1), -3/2, -3/2, 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]),
(-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt
[b^2 - 4*a*c])])

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1362

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n + c*x^(2*n))
^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^2 - 4*a*c, 2])))^Fr
acPart[p])), Int[(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[b^2 - 4*a*c])))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left (a+b x^n+c x^{2 n}\right )^{3/2} \, dx &=\frac {\left (a \sqrt {a+b x^n+c x^{2 n}}\right ) \int \left (1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )^{3/2} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {a x \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {1}{n};-\frac {3}{2},-\frac {3}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(513\) vs. \(2(140)=280\).
time = 1.05, size = 513, normalized size = 3.66 \begin {gather*} \frac {x \left (-3 b n^2 \left (b^2 (2+n)-4 a c (2+3 n)\right ) x^n \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (1+\frac {1}{n};\frac {1}{2},\frac {1}{2};2+\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )+2 (1+n) \left (4 a^2 c \left (1+6 n+8 n^2\right )+x^n \left (b+c x^n\right ) \left (3 b^2 n^2+2 b c \left (2+9 n+7 n^2\right ) x^n+4 c^2 \left (1+3 n+2 n^2\right ) x^{2 n}\right )+a \left (3 b^2 n^2+2 b c \left (4+21 n+23 n^2\right ) x^n+4 c^2 \left (2+9 n+10 n^2\right ) x^{2 n}\right )-3 a n^2 \left (b^2-4 a c (1+2 n)\right ) \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1}{n};\frac {1}{2},\frac {1}{2};1+\frac {1}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )\right )\right )}{8 c (1+n)^2 (1+2 n) (1+3 n) \sqrt {a+x^n \left (b+c x^n\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^n + c*x^(2*n))^(3/2),x]

[Out]

(x*(-3*b*n^2*(b^2*(2 + n) - 4*a*c*(2 + 3*n))*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]
)]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[1 + n^(-1), 1/2, 1/2, 2 + n^(-1),
(-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + 2*(1 + n)*(4*a^2*c*(1 + 6*n + 8*n^2)
 + x^n*(b + c*x^n)*(3*b^2*n^2 + 2*b*c*(2 + 9*n + 7*n^2)*x^n + 4*c^2*(1 + 3*n + 2*n^2)*x^(2*n)) + a*(3*b^2*n^2
+ 2*b*c*(4 + 21*n + 23*n^2)*x^n + 4*c^2*(2 + 9*n + 10*n^2)*x^(2*n)) - 3*a*n^2*(b^2 - 4*a*c*(1 + 2*n))*Sqrt[(b
- Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 -
 4*a*c])]*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2
- 4*a*c])])))/(8*c*(1 + n)^2*(1 + 2*n)*(1 + 3*n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \left (a +b \,x^{n}+c \,x^{2 n}\right )^{\frac {3}{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*x^n+c*x^(2*n))^(3/2),x)

[Out]

int((a+b*x^n+c*x^(2*n))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b x^{n} + c x^{2 n}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n+c*x**(2*n))**(3/2),x)

[Out]

Integral((a + b*x**n + c*x**(2*n))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n+c*x^(2*n))^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+b\,x^n+c\,x^{2\,n}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^n + c*x^(2*n))^(3/2),x)

[Out]

int((a + b*x^n + c*x^(2*n))^(3/2), x)

________________________________________________________________________________________